Электроника Элементы и устройства систем управления

Главная » Электроника » » Блокинг - генераторы

Блокинг-генератор по принципу построения представляет собой однокаскадный транзисторный усилитель с глубокой положительной обратной связью, осуществляемой импульсным трансформатором. Блокинг-генераторы применяют в качестве мощных источников коротких импульсов (длительностью от сотых долей до десятков микросекунд), имеющих большую скважность (больше 10) и высокую крутизну фронтов. На основе блокинг-генераторов часто выполняют формирователи управляющих импульсов в системах цифрового действия, они находят применение в схемах формирования пилообразного тока в устройствах электромагнитной развертки электронного луча по экрану электронно-лучевых приборов. Блокинг-генераторы могут работать в различных режимах: ждущем, автоколебательном, режимах синхронизации и деления частоты.

В качестве сердечника импульсного трансформатора используют ненасыщающиеся сердечники из магнитомягкого материала, т.е. сердечники с прямоугольной петлей гистерезиса. Наличие трансформатора в схеме блокинг-генератора позволяет осуществить электрическую развязку цепи нагрузки и источника питания, легко обеспечить согласование с нагрузкой обеспечить одновременное получение нескольких импульсов одинаковой или разной полярности и разной амплитуды.

Рис.1.31. Принципиальная (а) и эквивалентная (б) схемы блокинг-генератора

Рассмотрим работу ждущего блокинг-генератора на примере схемы, приведенной на рис.1.31,а. Она выполнена на транзисторе VT, включенном по схеме с общим эммитером, и трансформаторе T. Цепь положительной обратной связи осуществлена с помощью вторичной обмотки Wб трансформатора, конденсатора C и резистора R. Резистор Rб создает контур разряда конденсатора, когда транзистор закрыт. Выходной сигнал может быть снят либо непосредственно с коллектора транзистора, либо с дополнительной нагрузочной обмотки Wн трансформатора; цепь из диода VD1 и резистора R1 защищает транзистор от перенапряжений.

Будем считать, что сердечник трансформатора в процессе работы не насыщается. При этом между напряженностью магнитного поля H и индукцией B имеется однозначная связь

B =m·H, (1.62)

гдеm- магнитная проницаемость материала сердечника, являющаяся, в свою очередь, функцией напряженностиm= f(H).

Для упрощения рассмотрения в дальнейшем будем считать m=const. Намагничивающий ток imсоздает магнитный поток, потокосцепление которого с обмоткой коллекторной цепи Wк определяется из уравнения

Y = Lк·im,(1.63)

где Lк - индуктивность обмотки Wк; im=(iк-iб'-iн') - намагничивающий ток; iб'=nб·iб - ток базовой обмотки Wб, приведенный к первичной обмотке Wк;nб=Wб/Wк; iн'=iн·nн - ток нагрузки обмотки Wн, приведенный к первичной обмотке Wк; nн=Wн/Wк.

Работа схемы.В исходном состоянии транзистор заперт отрицательным напряжением смещения Еб, приложенным к цепи база-эмиттер транзистора. Блокинг-генератор находится в состоянии устойчивого равновесия, из которого он может быть выведен подачей в цепь базы транзистора запускающего импульса положительной полярности. При отпирании транзистора начинает действовать положительная обратная связь, т.е. возникает регенеративный процесс лавинообразного роста коллекторного тока iк и базового тока iб. В результате этого процесса транзистор входит в режим насыщения. Начинается процесс формирования переднего фронта импульса, по окончании которого формируется вершина импульса.

В этой стадии практически все напряжение питания Ек приложено к обмотке Wк трансформатора и ток этой обмотки будет непрерывно увеличиваться (dY/dt=const при Lк=const). Следовательно, ток коллектора будет непрерывно нарастать. В то же время ток базы непрерывно уменьшается за счет зарядки конденсатора C через эмиттерный переход транзистора, причем напряжение обмотки Wб в этот промежуток времени можно считать постоянным.

В конечном итоге в результате увеличения тока коллектора и уменьшения тока базы транзистор из режима насыщения выходит в активный режим и действие положительной обратной связи восстанавливается. Возникает регенеративный процесс обратного опрокидывания, в течении которого ток коллектора падает до нуля, а напряжение на коллекторе становится равным Ек. На этом цикл кончается и блокинг-генератор возвращается в исходное состояние, из которого он может быть выведен только следующим запускающим импульсом.

Таким образом за рабочий цикл блокинг-генератора формируется короткий импульс довольно большой мощности.

Рассмотрим отдельные этапы переходного процесса в блокинг-генераторе. Для этого воспользуемся эквивалентной схемой коллекторной цепи транзистора генератора (рис.1.31,б), где Rн'=Rн/nн2, Rвх'=Rвх/nб2 - сопротивление в базовой цепи транзистора, в схеме не учтены индуктивности рассеяния трансформатора и паразитные емкости. Временные диаграммы, поясняющие работу блокинг-генератора, приведены на рис.1.32.

Исходное состояние.В ждущем режиме в исходном состоянии транзистор заперт отрицательным напряжением -Еб, в цепи базы протекает ток Iб(0) = -Iко. Конденсатор С заряжен до напряжения

Uc(0) = -Eб + Iко·Rб, (1.64)

Напряжение на всех трех обмотках трансформатора равно нулю, а в сердечнике трансформатора имеется небольшой постоянный магнитный поток, обусловленный намагничивающей силой

F1 = Iко·Wк, (1.65)

Запуск и опрокидывание.В момент времени t1 (рис.1.32) поступает запускающий импульс eзап положительной полярности, который подается в цепь базы транзистора. Транзистор отпирается, что приводит в действие цепь положительной ОС. Ток коллектора растет, вызывая рост базового тока iб. Так как емкость конденсатора C достаточно велика, напряжение на ней практически не меняется в течении всего процесса регенерации. Можно считать, что ток заряда конденсатора C равен iб, т.к. сопротивление резистора R много больше входного сопротивления открытого транзистора.

Рис.1.32. Временные диаграммы токов и напряжений блокинг-генератора

Развитие регенеративного процесса отпирания транзистора возможно, если в схеме создаются условия для увеличения тока базы за счет положительной обратной связи. Это означает, что цепь обратной связи должна обеспечить соотношение для токов транзистора, при котором

,(1.66)

где ток коллектора

iк = iб·nб + iн·nн, (1.67)

Если принять на этапе регенеративного процесса напряжение на коллекторной обмотке равным DUк, то

, (1.68)

В результате подстановки выражения (1.67) в (1.66) с учетом (1.68) находим условие, необходимое для развития прямого регенеративного (блокинг) процесса в схеме

, (1.69)

Регенеративный процесс опрокидывания длится до тех пор, пока действует положительная ОС и транзистор находится в активной области. В момент времени t2 из-за уменьшения коллекторного напряжения Uк и роста базового тока iб транзистор попадает в режим насыщения, при котором Uк @ 0, U1 @ Ек.

Формирование вершины импульса.При работе транзистора в режиме насыщения формируется вершина импульса (интервал времени t2-t3). При этом к первичной обмотке трансформатора приложено практически все напряжение Ек, а в обмотках Wб и Wн индуцируются ЭДС, равные Uб@nб·Ек и Uн@nн·Ек. Токи im и iк нарастают во времени, что видно из диаграммы (рис.1.32). Ток базы также изменяется во времени из-за зарядки конденсатора C :

 

iб(t) = iб(t2)e -t/t, (1.70)

где

,(1.71)

rвхн - входное сопротивление насыщенного транзистора;

t=C·(R+rвхн) - постоянная времени зарядной цепи.

В выражении (1.71) не учтено активное сопротивление базовой обмотки трансформатора.

Через коллекторную обмотку и транзистор протекает ток (рис.1.31,б), равный сумме трех составляющих:

iк = im + iб '+ iн', (1.72)

где im -- ток намагничивания, iб'=iб·nб; iн'=Ек·nн2/Rн - приведенные к коллекторной обмотке токи базы и нагрузки.

Ток намагничивания im создается под воздействием приложенного к коллекторной обмотке Wк напряжения Ек и обусловлен перемещением рабочей точки по кривой намагничивания сердечника трансформатора из точки O' в направлении к точке M (рис.1.22). Характер изменения во времени тока im зависит от вида кривой намагничивания и числа витков коллекторной обмотки (ее индуктивности L) и обычно близок к линейному закону. Для тока будет действительно уравнение L·dim/dt=Ек, откуда находим

, , (1.73)

где tв - длительность вершины импульса.

Временные диаграммы изменения составляющих тока коллектора согласно выражения (1.72) показаны на рис.1.33.

Рис.1.33. Временные диаграммы изменения составляющих тока коллектора

С увеличением тока коллектора происходит рассасывание избыточных неосновных носителей заряда, накопленных в базе. С уменьшением тока базы этот заряд также уменьшается. В момент времени t3, когда выполняется условие

iк(t3) = b·iб(t3), (1.74)

транзистор выходит из режима насыщения в активную область и формирование вершины импульса заканчивается.

Длительность вершины выходного импульса блокинг-генератора можно найти из условия (1.74), которое с учетом выражений (1.70...1.73) принимает вид

 

 

, (1.75)

Для решения этого уравнения разложим экспоненту e-t/t в степенной ряд для t/t << 1:

,(1.76)

Ограничиваясь первыми двумя членами ряда (1.76) из (1.75), получаем выражение для длительности вершины импульса

, (1.77)

Обычно nб=1/3...1/6, тогда b-nб@b и формула (1.77) принимает вид

, (1.78)

Обратное опрокидывание и восстановление исходного состояния.В момент t3 выхода транзистора в активную область вступает в действие положительная ОС и возникает регенеративный процесс обратного опрокидывания. При этом в течении процесса регенерации можно считать, что заряд конденсатора С остается постоянным и Uc(t3)=Uc(t4). Уменьшение тока iк приводит к уменьшению Uб, а значит и тока базы iб. В итоге происходит дальнейшее уменьшение тока iк. Заряд, накопленный в базе, быстро рассасывается. Транзистор запирается, и токи iк и iб становятся равными Iко.

Из временной диаграммы тока базы (рис.1.32) видно, что во время обратного опрокидывания iб имеет обратное направление и значение его во много раз больше Iко. Это обусловлено наличием избыточного заряда в базе насыщенного транзистора, носители которой в момент изменения приложенного напряжения на обратное изменяют ток базы транзистора.

С момента времени t4 начинается процесс восстановления исходного состояния, который связан с рассеиванием электромагнитной энергии, запасенной в сердечнике трансформатора, и с разрядом конденсатора C. Разряд конденсатора С происходит по цепи Wб - R - Rб - Eб. Процесс восстановления заканчивается в момент времени, когда напряжение на конденсаторе достигнет установившегося значения Uc(0).

Время восстановления можно находить из упрощенного выражения

tвос @ (3...5)·С·(R + Rб), (1.79)

Для перевода блокинг-генератора в автоколебательный режим на схему подают положительное напряжение смещения (рис.1.34,а).

Рис.1.34. Схема блокинг-генератора в автоколебательном режиме (а), диаграмма изменения напряжения на базе транзистора (б).

Процессы, протекающие в автоколебательном режиме работы блокинг-генератора, аналогичны процессам в ждущем режиме. Начнем рассмотрение этого режима с момента запирания транзистора Т. В этот момент конденсатор С заряжен до некоторого максимального напряжения Uсм, минус которого приложен к базе транзистора (рис.1.34,б). Конденсатор разряжается через обмотку Wб, резистор Rб и источник смещения Еб. При этом напряжение на базе уменьшается стремясь к уровню:

Uбэ(¥) = Еб + Iко·Rб @ Еб, (1.80)

В определенный момент времени это напряжение достигает значения Uпор>0, при котором транзистор отпирается. Процесс формирования импульса повторяется. По окончании его конденсатор С снова оказывается заряженным до напряжения Uсм.

Длительность импульса определяется как и в ждущем режиме по выражению (1.78).

Длительность паузы

, (1.81)

где Uсм @ nб·Ек, R=0.

Тогда период автоколебаний T = tв + tп.

© 2008-2024 Электроника и Элементы и устройства систем управления